UNIT-2: Metal-Ligand Bonding

in Transition complexes

Notes by Mr. V. M. DESAI

vmdesaiorg@gmail.com, 9011442624

CONTENTS OF SYLLABUS:

2.1) Isomerism in complexes with CN= 4 & 6

- a) Introduction- Isomerism
- b) Types of Isomerism
- c) Stereoisomerism : i) Geometrical Isomerism & ii) Optical Isomerism
- d) **Structural Isomerism** : i) Ionisation Isomerism
 - ii) Hydrate or Solvate Isomerism
 - iii) Coordination Isomerism
 - iv) Linkage Isomerism
 - v) Coordination Position Isomerism

2.2) Molecular Orbital Theory (MOT)

- a) Introduction
- b) MOT of octahedral complexes with sigma bonding such as

$[Ti(H_2O)_6]^{3+}$, $[Ni(NH_3)_6]^{2+}$, $[CoF_6]^{3-}$ and $[Co(NH_3)_6]^{3+}$

c) Merits and demerits of MOT

T. Y. B. Sc. (Part-III)

Inorganic Chemistry

Academic Year: 2019-20 Sem-V Paper-X

"LIFE" AND "TIME" are the world's Best Teachers.

Life teaches us to make good use of time and

Time teaches us the value of life.

University Questions:

Isomerism:

The Roots of Education are **Bitter**, **But the Fruit is Very Sweet...**

Q.1) Enlist different types of isomerism possible in coordination complexes. Give one example of each type.

Q.2) Enlist different types of structural isomerism possible in coordination complexes. Give one example of each type

Q.3) What is geometrical isomerism? Explain it with coordination number 4 & 6.

Q.4) What is geometrical isomerism? Explain cis-trans isomerism in CN=4 (4M) Oct-2014

Q.5) Define optical isomerism. Give examples of optical isomerism in CN=4 & 6 (10M) Oct-2015

Q.6) How many isomers are possible for each of the following complexes?

i) $[CoCl_3(NH_3)_3]$ ii) $[CoCl_2(NH_3)_4]^+$ iii) $[PtNH_3PyClBr]$ iv) $[CoCl_2(NH_3)_2(Py)_2]$

<u>MOT</u>:

Q.1) Draw MO diagram for an octahedral complex. Explain the formation of bonding, non-bonding and antibonding MOs and Δ_0 from the diagram.

Q.2) Draw MO diagrams of $[Ti(H_2O)_6]^{3+}$ and $[Co(NH_3)_6]^{3+}$. Comment on magnetic properties. (10M) April-2013

Q.3) Draw MO diagrams of $[Ti(H_2O)_6]^{3+}$ complex ion and comment on its magnetic properties. (4M) Nov.2013

Q.4) Draw MO diagrams of $[CoF_6]^{3-}$ and $[Co(NH_3)_6]^{3+}$. Comment on magnetic properties. (10M) Oct-14 Dec.16

Q.5) Write short note on 'Merits and demerits of MOT'

Multiple Choice Questions (MCQ):

1) Stereoisomers have same structure but different relative arrangement of in space. **IMP** a) ions b) cations c) anions d) atoms of ligands 2) Which of the following is subtype of stereoisomer? a) ionization b) hydrate c) linkage d) optical **3)** Which of the following isomers have the different positions of ions are within or outside the coordination sphere? a) hydrate b) coordination c) linkage d) ionization 4) In coordination isomers, _____ are interchanged between cationic and anionic parts of the complex. a) Metal atom or ion b) ligands c) negative ions d) both a & b _____ are replaced by water molecules. **5)** In solvate (hydrate) isomers, d) both a & b a) Metal atom or ion b) ligands c) negative ions 6) Linkage isomers contain _____ ligands. **IMP** a) unidentate b) bidentate c) polydentate d) ambidentate

(4M) Oct-2015

7) Coordination position isomers are related to complexes. IMP
a) cationic b) anionic c) neutral d) bridged
8) According to MOT, $[Ti(H_2O)_6]^{3+}$ ion is IMP April-15
a) paramagnetic b) coloured c) colourless d) both a & b
9) According to MOT, [Ni(NH ₃) ₆] ²⁺ contains unpaired electrons. IMP Nov.13
a) 1 b) 2 c) 3 d) 4
10) According to MOT, [CoF ₆] ³⁻ contains unpaired electrons. IMP April-15
a) 1 b) 2 c) 3 d) 4
11) According to MOT, $[Co(NH_3)_6]^{3+}$ complex is IMP
a) paramagnetic b) diamagnetic c) ferromagnetic d) none of these
12) $[Ti(H_2O)_6]^{3+}$ ion has colour. IMP
a) Blue b) Yellow c) Orange d) Purple (reddish violet)
13) Which of the following complex ion is orange yellow?
a) $[Ti(H_2O)_6]^{3+}$ b) $[Ni(NH_3)_6]^{2+}$ c) $[CoF_6]^{3-}$ d) $[Co(NH_3)_6]^{3+}$
14) Which of the following complex ion is blue coloured?
a) $[Ti(H_2O)_6]^{3+}$ b) $[Ni(NH_3)_6]^{2+}$ c) $[CoF_6]^{3-}$ d) $[Co(NH_3)_6]^{3+}$
15) Which of the following complex has four unpaired electons?
a) $[Ti(H_2O)_6]^{3+}$ b) $[Ni(NH_3)_6]^{2+}$ c) $[CoF_6]^{3-}$ d) $[Co(NH_3)_6]^{3+}$
16) In $[Ti(H_2O)_6]^{3+}$ complex, there are, bonding, non-bonding and
antibonding MOs respectively.
a) 6,3,6 b) 6,6,3 c) 3,6,6 d) 3,3,6
17) As MOs are available for electronic transition, charge transfer
spectra is possible.
a) bonding b) non-bonding c) antibonding d) All of these
18) According to MOT, orbitals are remaining non-bonding in sigma
bonding case with octahedral geometry. a) a_1g b) t_2g c) t_1u d) eg April-13
19) According to MOT, overlapping orbitals must have
a) Comparable energy b) same symmetry
c) appreciable overlap d) All of these
20) MOT explains satisfactorily of the complexes.
a) Charge transfer spectra b) Nephelauexetic effect
c) Colour & magnetic properties d) All of these
"Success and Excuses do not talk together. If you want Excuses, forget about Success. If you want Success. do not give Excuses 1"
CONFUSE YOU

SMT. KASTURBAI WALCHAND COLLEGE, SANGLI

NOT THE QUESTION ITSELF

Isomerism in Coordination Compounds:

Isomers are two or more compounds that have the **same chemical formula** but a **different arrangement of ligands** (or atoms or groups) around central metal atom or ion **due to which they differ in one or more physical or chemical properties.** The phenomena of isomers are known as Isomerism.

Classification of Isomerism :

A) Structural Isomerism:

- i) Ionization isomerism
- ii) Linkage isomerism
- iii) Coordination isomerism
- iv) Hydrate Or Solvate isomerism
- v) Coordination position isomerism

i) <u>Ionization isomerism</u>: The isomerism, in which isomers have the same chemical formula but **produces different ions in the solution**, is known as 'Ionization Isomerism' and isomers thus obtained are known as ionization isomers. It is also known as **'ion-ion exchange isomerism'**.

Examples:

	Compounds	Colour	Ions present in the solution
a)	[Co(NH ₃)5 SO 4] Br	Red violet	[Co(NH ₃) ₅ SO ₄] + Br-
b)	[Co(NH ₃) ₅ Br] SO ₄	Red	[Co(NH ₃) ₅ Br] ²⁺ + SO₄²⁻

Explanation: In the two isomers (a) and (b), there is an **exchange of ions** namely Br⁻ and SO₄²⁻ inside and outside the coordination sphere. The aqueous solution of (a) gives the precipitate of AgBr on treatment with AgNO₃ since it contains Br⁻, while that of (b) gives precipitate of BaSO₄ on treatment with BaCl₂, since it contains SO₄²⁻

Other examples: A few more examples of ionization isomerism are

i) $[Co(NH_3)_5NO_2](SO)_4$ and $[Co(NH_3)_5(SO)_4] NO_2$ ii) $[Pt(NH_3)_4C1_2]Br_2$ and $[Pt(NH_3)_4Br_2]C1_2$

ii) <u>Linkage isomerism</u>: The isomerism in which isomers have the same chemical formula but **differ in the linkage of the ligand to central metal atom or ion**, is known as 'Linkage Isomerism' and isomers thus obtained are known as linkage isomers. Example:

 $[(NH_3)_5Co-NO_2]C1_2$ and $[(NH_3)_5Co-ONO]C1_2$

Explanation: Here, $-NO_2$ ligand can bind to the central metal through **nitrogen** or **oxygen** to give two different isomers.

Other examples: A few more examples of ionization isomerism are

Pd(AsPh₃)₂(SCN)₂ and Pd(AsPh₃)₂(NCS)₂

Note: A few more **ambidentate ligands** are cyano (CN-) and thiocyanate (SCN-) show **Linkage isomerism**

iii) <u>Coordination isomerism</u>: The isomerism in which isomers have the same chemical formula but **differ in the interchange of ligands between cationic and anionic entities in the complexes,** is known as 'Coordination Isomerism' and isomers thus obtained are known as Coordination isomers.

Example: $[Co(NH_3)_6][Cr(CN)_6]$ and $[Cr(NH_3)_6][Co(CN)_6]$

Explanation: In $[Co(NH_3)_6][Cr(CN)_6]$ complex, NH₃ ligands are bound to cobalt (Co^{3+}) and CN- ligands to Cr^{3+} . In its coordination isomer $[Cr(NH_3)_6]$ $[Co(CN)_6]$, the NH₃ ligands are bound to Cr^{3+} and CN- ligands to Co^{3+} .

Other examples: A few more examples of coordination isomerism are

i) $[Cu(NH_3)_4]\ [PtC1_4]$ and $[Pt(NH_3)_4]\ [CuCl_4]$

ii) [Cu(NH₃)₆] [Cr(CN)₆] and [Cr(NH₃)₆] [Cu(CN)₆]

iv) <u>Hydrate isomerism (Solvate isomerism)</u>: The isomerism in which isomers have the same chemical formula but differ in the number of molecules of H_2O inside and outside the coordination sphere, is known as 'Hydrate or Solvate Isomerism' and isomers thus obtained are known as Hydrate or Solvate isomers.

Example: CrC1₃.6H₂O exists in three hydrae isomers as given below;

		Number of H	I ₂ O Molecules
Compound	Colour	Inside Coordination sphere	Outside coordination sphere
(A) [Cr(H ₂ O) ₆ Cl ₃	Violet	6	0
(B) $[Cr(H_2O)_5C1]Cl_2.1H_2O$	Blue green	5	1
(C) [Cr(H ₂ O) ₄ C1 ₂]Cl. 2 H ₂ O	Green	4	2

Other examples: A few more examples of hydrate or solvate isomerism are

 $[Co(H_2O)_6]C1_3, [Co(H_2O)_5C1]Cl_2.H_2O; [Co(H_2O)_4C1_2]C1.2H_2O; [Co(H_2O)_3C1_3].3H_2O]C1_3, [Co(H_2O)_5C1]Cl_2.H_2O; [Co(H_2O)_4C1_2]C1.2H_2O; [Co(H_2O)_3C1_3].2H_2O]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_4C1_2]C1.2H_2O; [Co(H_2O)_4C1_2]C1.2H_2O; [Co(H_2O)_3C1_3].2H_2O]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_4C1_2]C1.2H_2O; [Co(H_2O)_3C1_3].2H_2O]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_4C1_2]C1.2H_2O; [Co(H_2O)_3C1_3].2H_2O]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_5C1]C1_3, [Co(H_2O)_5C1_3].2H_2O]C1_3, [Co(H_2O)_5C1_3, [Co(H_2O)_5C1_3].2H_2O]C1_3, [Co(H_2O)_5C1_3, [Co(H_2O)_5C1_3].2H_2O]C1_3, [Co(H_2O)_5C1_3, [C$

v) <u>Coordination Position Isomerism</u>: The isomerism in which isomers have the same chemical formula but **differ in the arrangement of the ligands relative to the metal ions in the bridged complexes**, is known as 'Coordination position Isomerism' and isomers thus obtained are known as Coordination position isomers.

B) Stereoisomerism: The isomerism, in which different ligands (or atoms or groups) occupy different spacial positions around the central metal atom or ion, is known as 'Stereoisomerism' and isomer thus obtained are known as 'Stereoisomer'.

Types of Stereoisomerism:

a) <u>Geometrical Or Cis-trans Isomerism</u>: The stereoisomerism which have same chemical formula but different arrangement of ligands or atoms or groups in space around central metal atom or ion, is known as 'Geometrical isomerism'. When ligands (or atoms or groups) occupy **adjacent position**, the corresponding isomer is known as **cis-isomer** whereas if ligands (or atoms or groups) occupy position **opposite to each other** is known as **trans-isomer**. Thus, geometrical isomerism is also known as **cis-trans isomerism**.

Geometrical isomerism is observed with

a) Coordination number = 4 and b) Coordination number = 6

a) Coordination Number 4 :

For CN=4, possible structure will be **tetrahedral or square planar** a) Tetrahedral geometry does **not show geometrical i.e. cis-trans isomerism.**

"Only I Can Change My Life. No One Can Do It for Me."

SMT. KASTURBAI WALCHAND COLLEGE, SANGLI

b) Square Planar geometry show geometrical i.e. cis-trans isomerism with formula

- i) [Ma₂b₂], where a and b are unidentate ligands
- ii) [Ma₂bc],
- iii) [Mabcd],
- iv) [M(A-B)2],
- i) [Ma₂b₂] type: In Cis isomer, the two similar ligands are arranged adjacent to each other whereas in **Trans isomer**, the two similar ligands are arranged **opposite** to each other as shown in fig.

Possibilities:

Cis- isomer

Trans-isomer

(Similar atoms- adjacent to each other) (Similar atoms- Opposite to each other) Example: Geometrical isomers of [Pt(NH₃)₂Cl₂]

ii) [**Ma₂bc**] **type:** In Cis isomer, the two similar ligands are arranged adjacent to each other whereas in **Trans isomer**, the two similar ligands are arranged **opposite** to each other as shown in fig.

Possibilities:

Cis- isomer (Similar atoms- adjacent to each other)

Trans-isomer (Similar atoms- Opposite to each other)

Example: Geometrical isomers of [PdCl₂BrI]²⁻

iii) [**Mabcd**] **type:** Complex of the type [**Mabcd**] when all the four ligands are different, **three** geometrical isomers are possible in square planar complexes.

Possibilities:

Example: Geometrical isomers of [PtNH₃PyClBr]

iv) [M(A-B)₂] type: In this complex [M(A-B)₂] type, 'M' is the central atom, and 'A-B' is an unsymmetrical bidentate ligand. The cis and trans forms of this complex are shown in Fig.

Cis- isomer

Trans-isomer

An example of this type of complex is $[Pt(gly)_2],$ where gly stands for glycino, (NH_2CH_2C00)- ligand.

Trans-isomer

b) Coordination Number =6: Complexes with coordination number six are octahedral in shape. Octahedral complexes of the type Ma₆ and Ma₅b do not show geometrical isomerism because in these complexes different spatial arrangements of ligands are not possible.

Octahedral geometry **show geometrical i.e. cis-trans isomerism** with formula;

- i) [Ma₄b₂], where a and b are unidentate ligands
- ii) [Ma₂b₂C₂],
- iii) [Ma₃b₃],
- iv) [Mabcdef],
- v) [M(A-A)₂a₂], where A-A are bidentate symmetrical ligands
- vi) [M(A-A)a₂b₂],
- vii) [M(A-B)₃], where A-B are bidentate unsymmetrical ligands

i) [Ma₄b₂] type:

Cis isomer is obtained when ligands **'b'** occupy adjacent **(1, 2)** positions, while trans- isomer is obtained when ligands **'b'** are opposite to each other, as shown in Fig. where they occupy 1, 6 positions.

"When you focus on problem, you will have more problems. But when focus on possibility, you will have more opportunity."

In this cis-isomer, the three Cl- are on one triangular face (positions 1, 2 and 3) and the three NH₃ molecules are placed on the **opposite triangular face** (position 4, 5 and 6). This isomers is designated as **facial (fac) isomer**.

In trans isomer, C1 are placed on the edges of the octahedron (**position 1, 2** and 6) while NH_3 molecules are present on the opposite edges (**positions 3, 4 and 5**) (**Refer Fig.**). This isomer termed as meridional (mer) or peripheral isomer.

Another example of this type of complex is [Rh(H₂O)₃Cl₃].

iv) [Mabcdef] type: Here, in all 15 isomers are possible, out of which only three have been isolated.

e.g. [PtNH₃PyNO₂ClBrI]

v) [M(A-A)₂a₂] type: where A-A are bidentate symmetrical ligands

In this type of complexes, central metal atom M is attached to two symmetrical bidentate chelating ligands (A-A) and two monodentate ligands (a). The two letters A and A in A-A indicate the two similar coordinating atoms. These complexes exist in cis and trans forms and exhibit the phenomenon of geometrical isomerism.

An example of this type of complex is **[Co(en)₂C1₂]⁺.** The cis and trans forms are shown in fig.

Cis-isomer

trans-isomer

vi) [M(A-A)a₂b₂] type: Example [Co(en) (NH₃)₂C1₂]+

vii) [M(A-B)₃], where A-B are bidentate unsymmetrical ligands

2) Optical Isomerism: The stereoisomerism which have same chemical formula but different arrangement of ligands (or atoms or groups) in space around central metal atom or ion in such a way that one is the mirror image of the other and cannot be superimposed on each other, is known as optical isomerism and isomers thus obtained are known as optical isomers or enantiomorphs.

Conditions:

- 1) A complex should be **asymmetric**.
- 2) The different arrangement of ligands in space around central metal atom or ion in such a way that one is the mirror image of the other and cannot be superimposed on each other.
- 3) <u>Optically Activity</u>: Symmetry elements such as axis of rotating reflection, plane of symmetry, center of symmetry etc. **must be absent in complex**, then compound is **optically active**.
- 4) <u>d</u> and <u>l</u> form: If plane polarized light (PPL) is rotated to left, it is called laevo form (or l-form), while if the plane polarized light is rotated to the right, it is called dextro form (or d-form).
- 5) <u>Racemic mixture:</u> When 50% l and 50% d form are present in a solution then it is known as 'Racemic mixture' *i.e.dl form*. This solution is optically inactive due to external compensation.

a) Optical isomerism with CN=4:

For CN=4, possible structure will be **tetrahedral or square planar**.

i) Tetrahedral complexes: Tetrahedral complex of [Ma₄] and [Ma₃b] type do

not show optical activity but [Mabcd] type show optical isomers.

e.g. $[As(CH_3)(C_2H_5)(S)(C_6H_5COO)]^{+2}$ ion

Tetrahedral complexes of Be(II), Be(III) with unsymmetric bidentate ligands are resolved into optically active forms.

Don't limit your challenges, Challenge your limits.

SMT. KASTURBAI WALCHAND COLLEGE, SANGLI

<u>ii)</u> Square Planar Complexes: In square planar complexes, all the four ligands and central metal atom lie in the same plane. Therefore, they possess a plane or axis of symmetry and are generally not chiral in nature. Hence, optical isomerism is not common in square planar complexes and is very rarely observed.

b) Optical isomerism with CN=6:

Optical isomerism is more common in six coordination compounds (i.e. in Octahedral complexes).

- i) Octahedral complexes containing only monodentate ligands: The octahedral complex of the type [Ma₄b₂], [Ma₃b₃], [Ma₂b₂c₂], [Ma₂b₂cd], [Ma₂bcde] and [Mabcdef] does not optical isomerism because these types are **optically inactive**.
- **ii) Octahedral complexes containing one or more symmetrical bidentate chelating ligands:** If an octahedral complex contains one or more bidentate chelating ligands, it is **optically active.**
- a) **Complexes of the type [M(A-A)_3]^{n\pm}:** In this type, three symmetrical bidentate chelating ligands (A-A) are coordinated to the central metal atom M.

An example of this type of complexes is $[Cr(C_2O_4)_3]^3$ - Or $[Cr(OX)_3]^3$ -

It is optically active and has been resolved into d— and 1— forms.

b) Complexes of the type [M(A-A)₂a₂]^{n±}: The complexes in which two symmetrical bidentate chelating ligands (A-A) and two monodentate ligands (a), are coordinated to central metal atom M, exhibit the phenomenon of optical isomerism.

Example:

An example of this type of complexes is $[CoC1_2(en)_2]^+$ shows both geometrical as well as optical isomerism. Its cis form is unsymmetrical, while the trans form is symmetrical because it contains a plane of symmetry.

Hence, optical isomerism is shown by cis form only.

The cis form is resolved into d— and 1— forms. The d— and I— forms along with the optically inactive trans form are shown in Fig. 9.15.

Cis diammine dichloro (ethylene diamine) cobalt (III) ion.

(d) Complexes containing hexadentate ligands can be resolved into optical isomers. e.g. [Co(edta)] ion

> Molecular Orbital Theory (MOT) -

MOT was developed by Scientist J. Van Vleck. According to MOT molecular orbitals are formed by linear combination of atomic orbitals. Therefore, MOT is also called as LCAO (Linear Combination of Atomic Orbitals) method.

Formation of Octahedral complexes –

During the formation of octahedral complexes MOT uses nine metal orbitals 3d, 4s & 4p orbitals and six ligand orbitals from six ligands.

- **Metal orbitals :** Nine metal orbitals are classified in four groups, on the basis of their symmetry.
- **a**₁**g** This group contains one 4s orbital which is spherically symmetrical.
- t_1u This group contains three 4p orbitals having equal energies and differing in spacial orientation only.
- eg This group contains two equivalent 3d orbitals dx^2 - y^2 , dz^2
- t2g This group contains three equivalent 3d orbitals dxz, dyz, dxy having equal energies and differing in spacial orientation only.

Out of these nine metal ion orbitals, only a_1g , $t_1u \& eg$ orbitals are involved in sigma (σ) bond formation. While t_2g orbitals are involved in pi (π) bonding.

• **Ligand orbitals :** Six orbitals from six ligands are combined to form a set of six equal energy orbitals called as ligand group orbitals LGO. These six LGOs fall into three groups: a₁g, t₁u & eg.

During octahedral complex formation, the metal orbitals overlap linearly with LGOs having appropriate symmetry, to form bonding molecular orbitals (BMOs) and antibonding molecular orbitals (ABMOs). Thus,

- i) Metal a_1g orbital combines linearly with a_1g LGOs to form A_1g bonding molecular orbitals and A_1g^* antibonding molecular orbitals.
- ii) Three t_1u metal orbitals combine linearly with three t_1u LGOs to form three T_1u bonding molecular orbitals and three T_1u^* antibonding molecular orbitals.

- iii) Two eg metal orbitals combine linearly with two eg LGOs to form two Eg bonding molecular orbitals and two Eg* antibonding molecular orbitals.
- iv) While the t_2g orbitals (dxz, dyz and dxy) of the metal ion remain unchanged in the complex ion since they do not overlap with the ligand orbitals. They are nonbonding T_2g^n orbitals.

All these orbitals are arranged according to their increasing energies. Six LGOs have same energy and their energy is less than that of metal orbitals. Antibonding molecular orbitals lie above and bonding molecular orbitals lie below the mean value of combining orbitals. After MO formation electrons present in metal orbitals and ligand orbitals are filled in available lower energy molecular orbitals.

1) Hexaaqua titanium (III) ion [Ti(H₂O)₆]³⁺:

In this complex, central metal ion is Ti^{3+} and surrounding neutral ligand is H_2O .

1) M.O. Diagram:

2) Explanation:

During the formation of this complex, 3d, 4s & 4p orbitals of Ti^{3+} ion are available for linear combination with LGOs. Thus, a_1g , t_1u & eg orbitals of Ti^{3+} ion combine with a_1g , t_1u & eg LGOs to form **six bonding** molecular orbitals a_1g , t_1u & eg and **six antibonding** molecular orbitals a_1g^* , t_1u^* & eg^{*}. While t_2g orbitals remain **non-bonding t_2g^n.**

3) Electronic Configuration (EC) of metal ion:

E.C. of Ti (Z= 22) : $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^2$, $4s^2$ Or [Ar] $3d^2$, $4s^2$ E.C. of Ti³⁺ (Z= 19) : $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^1$, $4s^0$ Or [Ar] $3d^1$, $4s^0$

4) Filling of electrons:

- **a)** In all **13 electrons** are involved in complex formation; one from Ti⁺³ ion and 12 from six ligands.
- **b)** These electrons are then filled in MOs according to Aufbau principle. The electrons are first filled in lower energy bonding molecular orbitals and then higher energy orbitals are occupied.
- c) Thus, the E.C. of this complex is : a_1g^2 , t_1u^6 , eg^4 , t_2g^1
- **5) Magnetic Character:** In this complex, **one unpaired** electron is present in MO. Therefore, this complex is **paramagnetic** in nature.

6) Colour and Spectra:

a) This can be explained by the transition of electron from t_2g^n to eg^* which develops **purple or reddish violet colour** to the complex solution due to absorption of yellow and green light.

- b) The absorption spectrum of $[Ti(H_2O)_6]^{3+}$ shows the maxima at 20,300cm⁻¹ which corresponds to the 243kJ/mol of energy for Δ_0 as shown in M.O. diagram.
- c) Further the steep portion of the curve 27,000 cm⁻¹ to 30,000 cm⁻¹ is due to charge transfer as shown in fig.

Q.1) Draw MO diagram for [Ti(H₂O)₆]³⁺ octahedral complex. Explain the formation of bonding, non-

bonding and antibonding MOs and comment on spectra & its magnetic properties. IMP

Q.2) Draw MO diagrams of [Ti(H₂O)₆]³⁺ complex ion and comment on its magnetic properties. Nov.2013

2) Hexamine nickel (II) ion [Ni(NH₃)₆]²⁺:

In this complex, central metal ion is Ni^{2+} and surrounding neutral ligand is NH_3 .

- 1) M.O. Diagram: (Draw diagram here)
- 2) Explanation : During the formation of this complex, 3d, 4s & 4p orbitals of Ni²⁺ ion are available for linear combination with LGOs. Thus, a₁g, t₁u & eg orbitals of Ni²⁺ ion combine with a₁g, t₁u & eg LGOs to form six bonding molecular orbitals a₁g, t₁u & eg and six antibonding molecular orbitals a₁g^{*}, t₁u^{*} & eg^{*}. While t₂g orbitals remain non-bonding t₂gⁿ.

d) Thus, the E.C. of this complex is : a_1g^2 , t_1u^6 , eg^4 , t_2g^6 , eg^{*2}

- 5) Magnetic Character: In this complex, two unpaired electrons are present in MO. Therefore, this complex is paramagnetic in nature.
- 6) Colour and Spectra:
 - a) This can be explained by the transition of electron from t_2g^n to eg^* which develops **violet blue colour to** the complex solution due to absorption of light.
 - b) Δ_0 of this complex is **129.28kJ/mol** which is comparatively small.
 - c) The energy gap (Δ_0) in between t₂g & eg* **is small**, because NH₃ is a strong field ligand. So, t₂g orbitals are first filled completely and then electrons enter in eg* orbitals.

3) [Co(NH₃)₆]³⁺ :

In this complex, central metal ion is Co³⁺ and surrounding ligand is **NH**₃.

1) M.O. Diagram:

2) Explanation: During the formation of this complex, 3d, 4s & 4p orbitals of Co³⁺ ion are available for linear combination with LGOs. Thus, a₁g, t₁u & eg orbitals of Co³⁺ ion combine with a₁g, t₁u & eg LGOs to form six bonding molecular orbitals a₁g, t₁u & eg and six antibonding molecular orbitals a₁g^{*}, t₁u^{*} & eg^{*}. While t₂g orbitals remain non-bonding t₂gⁿ.

3) Electronic Configuration (EC) of metal ion:

E.C. of Co (Z= 27): $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^7$, $4s^2$ Or [Ar] $3d^7$, $4s^2$ E.C. of Co³⁺ (Z= 24): $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^6$, $4s^0$ Or [Ar] $3d^6$, $4s^0$

4) Filling of electrons:

- a) In all 18 electrons are involved in complex formation; eight from Co³⁺ ion and 12 from six NH₃ ligands.
- b) These electrons are then filled in MOs according to Aufbau principle & Hund's rule. The electrons are first filled in lower energy bonding molecular orbitals and then higher energy orbitals are occupied.
- **c)** Due to strong field NH₃ ligand, t₂g orbitals are filled completely and eg* orbital remains vacant.
- d) Thus, the E.C. of this complex is : a_1g^2 , t_1u^6 , eg^4 , t_2g^6

5) Magnetic Character: In this complex, **all electrons present** in MOs are paired, therefore this complex is **diamagnetic in nature**.

6) Colour and Spectra:

- a) This can be explained by the transition of electron from t_2g^n to eg^* which develops **orange yellow colour to** the complex solution due to absorption of light.
- b) Δ_0 of this complex is **296kJ/mol** which is comparatively large.
- c) The energy gap (Δ_0) in between t₂g & eg* **is large**, because NH₃ is a strong field ligand. So, t₂g orbitals are filled completely and eg* orbitals remain vacant.

The best preparation of tomorrow is doing your best today.

- **4)** Hexafluoro cobalt (III) ion [CoF₆]³⁻ : In this complex, central metal ion is Co³⁺ and surrounding six weak field ligand is F⁻.
 - 1) M.O. Diagram: (Draw diagram here)
 - 2) Explanation : During the formation of this complex, 3d, 4s & 4p orbitals of Co³⁺ ion are available for linear combination with LGOs. Thus, a₁g, t₁u & eg orbitals of Co³⁺ ion combine with a₁g, t₁u & eg LGOs to form six bonding molecular orbitals a₁g, t₁u & eg and six antibonding molecular orbitals a₁g^{*}, t₁u^{*} & eg^{*}. While t₂g orbitals remain non-bonding t₂gⁿ.

4) Filling of electrons:

- **a)** In all **18 electrons** are involved in complex formation; eight from Co³⁺ ion and 12 from six F⁻ ligands.
- b) These electrons are then filled in MOs according to Hund's rule. The electrons are first filled in lower energy bonding molecular orbitals and then higher energy orbitals are occupied.
- c) The energy gap ∆o in between t₂g & eg* is small, as F⁻ is a weak field ligand. Thus, first 12 electrons are filled in lower energy bonding molecular orbitals a₁g, t₁u, eg MOs, while remaining 6 electrons are added in t₂g and eg* orbitals singly and then pairing starts in t₂g orbitals.
- **d)** Thus, the E.C. of this complex is : a_1g^2 , t_1u^6 , eg^4 , t_2g^4 , eg^{*2}
- **5) Magnetic Character:** In this complex, **four unpaired electrons** are present in MO. Therefore, this complex is **paramagnetic in nature**.
- 6) Colour and Spectra:
 - a) This can be explained by the transition of electron from t_2g^n to eg^* which develops **blue colour to** the complex solution due to absorption of light.
 - b) Δ_0 of this complex is **very small** and less than pairing energy.
 - c) The energy gap (Δ_0) in between t₂g & eg* **is small**, because F- is a weak field ligand. So, t₂g orbitals are filled completely and eg* orbitals remain vacant.

Q.1) Draw molecular orbital diagram for $[Co(NH_3)_6]^{3+}$ & $[CoF_6]^{3-}$ ion. Explain the magnetic properties of these ions. Dec.2016 10Marks

Q.2) Why $[Co(NH_3)_6]^{3+}$ ion is diamagnetic while & $[CoF_6]^{3-}$ ion is paramagnetic in nature? 5Marks OR

Q.2) What are high spin & low spin complexes of Co(III)? Dec.2016 5Marks

Ans. Electronic Configuration (EC) of Co(III) ion:

E.C. of Co (Z= 27): $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^7$, $4s^2$ Or [Ar] $3d^7$, $4s^2$

E.C. of Co³⁺ (Z= 24) : $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^6$, $4s^0$ Or [Ar] $3d^6$, $4s^0$

- a) Low spin complex: Due to strong field NH₃ ligand in [Co(NH₃)₆]³⁺ complex, the distribution of 3d⁶ electrons in t₂g & eg orbitals takes place in such a way that all electrons get paired. Thus, it is diamagnetic in nature due to absence of unpaired electrons & hence this complex is known as low spin complex.
- **b)** High spin complex: Due to weak field \mathbf{F} ligand in $[CoF_6]^{3-}$ complex, the distribution of $3d^6$ electrons in t_2g & eg orbitals takes place in such a way that we get maximum number of unpaired electrons. Thus, it is paramagnetic in nature due to presence of unpaired electrons & hence this complex is known as high spin complex.

Merits of MOT –

- 1. MOT considers all possible interaction between metal orbitals & ligand orbitals.
- 2. This is a **complete theory** because it gives satisfactory information for stability, geometry and relative energies of different structures of metal complexes unlike VBT or CFT.
- 3. It gives satisfactory information for high spin and low spin complexes, their different magnetic moments and variation in CFSE (Δ_0 values).
- 4. It gives satisfactory information for stability of complexes w.r.t. weak and strong field ligands.
- 5. MOT explains **pi-bonding**.
- 6. MOT also explains charge transfer spectra.
- 7. Magnetic properties are also explained by this theory.
- 8. Nephelauexetic effect (cloud expansion effect), shifts in NMR spectra etc. could be explained by MOT.

Demerits of MOT –

- 1. MOT is a complicated theory.
- 2. The complex ion containing many atoms cannot be explained easily by MOT i.e. **multiatom complex ion system** cannot be explained easily.
- 3. For simple molecular orbital calculations, computer is necessary.

Use Chemistry Blog (Click on Following Link)

https://vmdesaichemistry.blogspot.com/

For downloading

- ✓ Study Materials (Notes, PPT, Videos, Animations etc.),
- ✓ Syllabus & Lecture Plan
- ✓ Old University Question Papers,
- ✓ M.Sc. Entrance Question Papers
- ✓ Online Chemistry Resource Materials Links
- ✓ Virtual Chemistry Lab Links
- ✓ Digital Chemistry Magazine
- $\checkmark\,$ Information of Chemistry Software's and Android App
- ✓ SET/NET/GATE Study Materials & Question Papers
- ✓ Other Technical Supporting Links

Seat No.	t	1 - 1 - 1			Total No. of Pages : 3
B.S	ic. (I	Part	- III)	(Semester - V) (Revised) Exa	amination, December - 2016
				Inorganic Chemistry (Pa Sub. Code : 6582	aper - X) 4
			T	Sub. Couc. 0502	Total Marks • 40
Day Tim	and 1	Date	: 1 hu	rsday, 8 - 12 - 2010 to 02.00 p.m.	I Utai Miarks . 40
Instructions :		1) 2) 3)	All questions are compulsory. Figures to the right indicate full ma Draw neat labeled diagrams and w necessary.	arks. vrite balanced equations wherever	
Q1)	Sele sent	ect th ence	e mos s.	st correct alternative among thos	se given below and rewrite the [8]
	a)	Sof	t acid	l and soft base interaction is gen	erally in nature.
		i)	inter	rstitial	
		ii)	cov	alent	verseneg – Kongo – fen
		iii)	met	allic	
		iv)	ioni	c	
	b)	Dur met	ing tl al	he formation of octahedral comp	plex ligands approach with the
		i)	alor	ng the axes	
		ii)	eith	er along the axes or between the	axes
		iii)	bety	ween the axes	
		iv)	neit	ther along the axes nor between t	the axes
			rease	in CFSE the stability of	f complexes.
	c)	Inci			
	c)	Incı i)	incr	reases	
	c)	Inci i) ii)	incr dec	reases	
	c)	Inci i) ii) iii)	incr dect first	reases reases t increases then decreases	

ST - 534

- d) The backbones in fluorocarbons consists of structural units of _____
 - i) –C–C–
 - ii) F F
 - iii) C H
 - iv) -C F
- e) When Germanium is doped with pentavalent impurity then the resulting substance is _____.
 - i) superconductor
 - ii) p type semiconductor
 - iii) n type semiconductor
 - iv) insulator
- f) If there is no gap between valence band and conduction band then the substance becomes _____

and some and some man and some insector

- i) bad conductor
- ii) insulator
- iii) good conductor
- iv) neutral
- g) In $[Ti(H_2O)_6]^{3+}$ ion there are _____ bonding _____ antibonding and _____ non bonding MOS.
 - i) 3, 6, 3
 - ii) 6, 6, 3
 - iii) 6, 3, 6
 - iv) 3, 3, 6
- h) In dimethyl beryllium Be C Be bridges are formed by _____ bonds.
 - i) (2C 2e)
 - ii) (3C 3e)
 - iii) (1C 2e)
 - iv) (3C 2e)

Q2) Attempt any TWO of the following :

- a) Draw molecular orbital diagram for $[Co(NH_3)_6]^{+3}$ ion and $[CoF_6]^{3-}$ ion. Explain the magnetic properties of these ions.
- b) What are semiconductors? Discuss intrinsic and extrinsic conductors.
- c) Discuss the structures of alkyl and aryl compounds of Be and Al.

Q3) Attempt any Three of the following :

[12]

ST - 534

[20]

- a) Discuss in brief acid base strength, hardness and softness.
- b) What are high spin and low spin complexes of Co (III)?
- c) Give the points of difference between organic and inorganic polymers.
- d) What are phosphonitrilic compounds? Discuss the structure of $(PNCl_2)_3$.
- e) Discuss the structure and bonding in $Ni(CO)_4$
